p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.49D8, C22.8SD32, C16⋊4C4⋊9C2, (C2×C8).74D4, (C2×C4).42D8, C8⋊7D4.6C2, C2.D16⋊13C2, C22⋊C16⋊12C2, C8.70(C4○D4), C2.12(C2×SD32), (C2×C16).45C22, (C2×C8).533C23, (C2×D8).10C22, (C22×C4).353D4, C22.119(C2×D8), C2.17(C16⋊C22), C2.D8.18C22, C4.15(C8.C22), (C22×C8).130C22, C4.40(C22.D4), C2.13(C22.D8), (C2×C2.D8)⋊17C2, (C2×C4).801(C2×D4), SmallGroup(128,965)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.49D8
G = < a,b,c,d,e | a2=b2=c2=e2=1, d8=c, dad-1=eae=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bd7 >
Subgroups: 212 in 75 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C2×D4, D4⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C2×C4⋊C4, C4⋊D4, C22×C8, C2×D8, C22⋊C16, C2.D16, C16⋊4C4, C2×C2.D8, C8⋊7D4, C23.49D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, SD32, C22.D4, C2×D8, C8.C22, C22.D8, C2×SD32, C16⋊C22, C23.49D8
Character table of C23.49D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 16 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ23 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ24 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ25 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ26 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 23)(2 60)(3 25)(4 62)(5 27)(6 64)(7 29)(8 50)(9 31)(10 52)(11 17)(12 54)(13 19)(14 56)(15 21)(16 58)(18 37)(20 39)(22 41)(24 43)(26 45)(28 47)(30 33)(32 35)(34 51)(36 53)(38 55)(40 57)(42 59)(44 61)(46 63)(48 49)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 49)(30 50)(31 51)(32 52)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 33)(3 15)(4 47)(5 13)(6 45)(7 11)(8 43)(10 41)(12 39)(14 37)(16 35)(17 49)(18 20)(19 63)(21 61)(22 32)(23 59)(24 30)(25 57)(26 28)(27 55)(29 53)(31 51)(36 48)(38 46)(40 44)(50 60)(52 58)(54 56)(62 64)
G:=sub<Sym(64)| (1,23)(2,60)(3,25)(4,62)(5,27)(6,64)(7,29)(8,50)(9,31)(10,52)(11,17)(12,54)(13,19)(14,56)(15,21)(16,58)(18,37)(20,39)(22,41)(24,43)(26,45)(28,47)(30,33)(32,35)(34,51)(36,53)(38,55)(40,57)(42,59)(44,61)(46,63)(48,49), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,33)(3,15)(4,47)(5,13)(6,45)(7,11)(8,43)(10,41)(12,39)(14,37)(16,35)(17,49)(18,20)(19,63)(21,61)(22,32)(23,59)(24,30)(25,57)(26,28)(27,55)(29,53)(31,51)(36,48)(38,46)(40,44)(50,60)(52,58)(54,56)(62,64)>;
G:=Group( (1,23)(2,60)(3,25)(4,62)(5,27)(6,64)(7,29)(8,50)(9,31)(10,52)(11,17)(12,54)(13,19)(14,56)(15,21)(16,58)(18,37)(20,39)(22,41)(24,43)(26,45)(28,47)(30,33)(32,35)(34,51)(36,53)(38,55)(40,57)(42,59)(44,61)(46,63)(48,49), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,33)(3,15)(4,47)(5,13)(6,45)(7,11)(8,43)(10,41)(12,39)(14,37)(16,35)(17,49)(18,20)(19,63)(21,61)(22,32)(23,59)(24,30)(25,57)(26,28)(27,55)(29,53)(31,51)(36,48)(38,46)(40,44)(50,60)(52,58)(54,56)(62,64) );
G=PermutationGroup([[(1,23),(2,60),(3,25),(4,62),(5,27),(6,64),(7,29),(8,50),(9,31),(10,52),(11,17),(12,54),(13,19),(14,56),(15,21),(16,58),(18,37),(20,39),(22,41),(24,43),(26,45),(28,47),(30,33),(32,35),(34,51),(36,53),(38,55),(40,57),(42,59),(44,61),(46,63),(48,49)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,49),(30,50),(31,51),(32,52)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,33),(3,15),(4,47),(5,13),(6,45),(7,11),(8,43),(10,41),(12,39),(14,37),(16,35),(17,49),(18,20),(19,63),(21,61),(22,32),(23,59),(24,30),(25,57),(26,28),(27,55),(29,53),(31,51),(36,48),(38,46),(40,44),(50,60),(52,58),(54,56),(62,64)]])
Matrix representation of C23.49D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 9 |
0 | 0 | 4 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 7 | 0 | 0 |
10 | 16 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,4,0,0,9,4],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,10,0,0,7,16,0,0,0,0,1,0,0,0,2,16],[0,1,0,0,1,0,0,0,0,0,1,16,0,0,0,16] >;
C23.49D8 in GAP, Magma, Sage, TeX
C_2^3._{49}D_8
% in TeX
G:=Group("C2^3.49D8");
// GroupNames label
G:=SmallGroup(128,965);
// by ID
G=gap.SmallGroup(128,965);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,394,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^8=c,d*a*d^-1=e*a*e=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*d^7>;
// generators/relations
Export